(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Любой человек, разбирающийся в физике, ✨ скажет, что скорость движения электрического тока равна скорости света 🔆 и составляет 300 тысяч километров в секунду. 🕐 С одной стороны он прав на 100%, но есть нюансы.

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Электрический ток и его скорость

Жизнь современного человека полна комфорта. Сегодня мы имеем все блага цивилизации в свободном доступе. Главным достижением, которое совершенствовалось в течение долгого времени, является электрическая энергия, доступная практически в любой части мира. Мы привыкли к тому, что электроэнергия повсюду и задумываемся о ней лишь в тот момент, когда она внезапно пропадает.

На самом деле явление электричества таит в себе много интересного, что желательно было бы знать каждому человеку.

Например, одним из вопросов, которым нужно задаться, является скорость электрического тока. Мало кто думал о том, как быстро зажжется лампочка, находящаяся в сотне километров от источника энергии. Этот вопрос актуален для населенных пунктов, которые находятся вдали от цивилизации.

Опытным путем учеными и исследователями было доказано, что электрический сигнал движется по кабелю со скоростью света, а именно 300 тысяч км/сек.

Важно отметить, что электроны и ионы в проводнике при этом движутся совсем не с такой скоростью. Они просто на просто не могут иметь столь высокую скорость в проводящем материале.

Под скоростью света в случае с электрическим током понимается показатель скорости, с которым заряженные частицы приходят в движение друг за другом, а не движутся относительно друг друга. Носители заряда при этом обладают средней скоростью, равной, как правило, нескольким миллиметрам за 1 сек.

Более подробно объясним данную ситуацию примером:

К заряженному конденсатору присоединяются провода большой длины, идущие к лампе, что находится на расстоянии около 100 км. Замыкание цепи происходит вручную. После этого носители зарядов приходят в движение на том отрезке провода, который подключен к конденсатору. При этом начинается покидание электронами минусовой обкладки конденсатора, следовательно, происходит уменьшение электрического поля в конденсаторе параллельно с уменьшением плюсовой обкладки.

Таким образом, между обкладками сокращается разность потенциалов. При этом электроны, пришедшие в движение, приходят на место тех, что ушли. То есть, запущен процесс перераспределения электронов внутри провода за счет влияния электрического поля. Данный процесс растет, как снежный ком, и переходит дальше по всей длине провода, достигая в итоге нити накаливания лампы.

Получается, что перемены в состоянии электрического поля распространяются внутри проводника со скоростью, равной скорости света. При этом происходит активация электронов в электрической цепи с аналогичной скоростью. Хотя сами электроны движутся друг за другом по проводнику с гораздо меньшей скоростью.

Теперь разберемся в явлении гидравлической аналогии. Рассмотрим это понятие на примере движения водного потока из пункта А в пункт Б.

Допустим, что из небольшого населенного пункта по трубе в город поступает вода. Для этого функционирует специальный насос, который повышает давление внутри трубы, и вода под влиянием давления движется гораздо быстрее. Малейшие перемены в давлении по трубе распространяются очень быстро (приблизительно 1400 км/сек). Скорость распространения данных перемен напрямую зависит от показателя плотности жидкости, ее температуры и степени оказываемого давления. Через совсем короткий промежуток времени (доля секунды) вода уже поступила в город. Но это уже совсем другая вода. Ведь молекулы в ее составе провоцируют движение друг друга из-за столкновений между собой.

При этом скорость движения данных молекул гораздо меньше, ведь дрейфовая скорость имеет прямую связь с силой напора. То есть, столкновения молекул друг с другом распространяются очень быстро, а скорость одной молекулы при этом не увеличивается.

Абсолютно аналогичный процесс происходит с электрическим током. Проведем параллели: скорость распространения поля есть скорость распространения давления, а скорость движения молекул, следовательно, есть скорость электронов, создающих ток.

Дрейфовая скорость – это скорость последовательного движения заряженных частиц. Электронами данная скорость приобретается за счет действия внешнего электрического поля.

В случае, если внешнее электрическое поле отсутствует, то движение электронов внутри проводника происходит хаотично. Иными словами, конкретного направления у электрического тока нет, а дрейфовая скорость при этом нулевая.

При наличии внешнего электрического поля у проводника носители заряда приходят в движение, скорость которого зависит от ряда факторов (концентрация свободных электронов, площадь сечения провода, величины тока).

Таким образом, электрический ток имеет скорость распространения по проводнику равную скорости света. При этом скорость  движения тока в проводнике – очень мала.

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Скорость электрического тока

Давайте проведем такой мысленный эксперимент. Представьте, что на расстоянии в 100 километров от города находится некая деревня, и что из города в эту деревню проложена проводная сигнальная линия длиной примерно в 100 километров с лампочкой на конце. Линия экранированная двухпроводная, она проложена на опорах вдоль автомобильной дороги.

И если теперь послать сигнал по этой линии из города в деревню, то через какое время он сможет быть там принят?

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Расчеты и опыт говорят нам, что сигнал в виде засветившейся лампочки появится на другом конце минимум через 100/300000 секунд, то есть минимум через 333,3 мкс (без учета индуктивности провода) в деревне загорится лампочка, значит в проводнике установится ток (допустим, мы используем постоянный ток от заряженного конденсатора).

100 — это длина каждой из жил нашего провода в километрах, а 300000 километров в секунду — скорость света — скорость распространения электромагнитной волны в вакууме. Да, «движение электронов» распространится по проводнику со скоростью света.

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Но тот факт, что электроны начинают приходить в движение друг за другом со скоростью света вовсе не означает, что сами электроны движутся в проводнике со столь огромной скоростью. Электроны или ионы, в металлическом проводнике, в электролите или в другой проводящей среде, не могут двигаться так быстро, то есть носители заряда не движутся друг относительно друга со скоростью света.

Скорость света в данном случае — это та скорость, с которой носители заряда в проводнике начинают друг за другом приходить в движение, то есть это скорость распространения поступательного движения носителей заряда. Сами же носители заряда имеют «дрейфовую скорость» при установившемся токе, скажем в медном проводнике, всего несколько миллиметров в секунду!

Поясним этот момент. Допустим, у нас есть заряженный конденсатор, и мы присоединяем к нему длинные провода от нашей лампочки, установленной в деревне на расстоянии в 100 километров от конденсатора. Присоединение проводов, то есть замыкание цепи осуществляем выключателем вручную.

Что произойдет? При замыкании выключателя начинается движение заряженных частиц в тех частях проводов, которые присоединены к конденсатору. Электроны покидают минусовую обкладку конденсатора, электрическое поле в диэлектрике конденсатора уменьшается, положительный заряд противоположной (плюсовой) обкладки уменьшается — на нее забегают электроны из присоединенного провода.

Так разность потенциалов между обкладками уменьшается. А так как электроны в прилегающих к конденсатору проводах начали двигаться, то на их места приходят другие электроны из отдаленных мест провода, иначе говоря начинается процесс перераспределения электронов в проводе из-за действия электрического поля в замкнутой цепи. Этот процесс распространяется все дальше и дальше по проводу и наконец достигает нити накаливания сигнальной лампы.

Итак, изменение электрического поля распространяется по проводнику со скоростью света, активируя электроны в цепи. Но сами электроны движутся гораздо медленнее.

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Прежде чем пойти дальше, рассмотрим гидравлическую аналогию. Пусть из деревни в город по трубе подается минеральная вода. Утром в деревне запустили насос, и он стал повышать давление воды в трубе, чтобы заставить воду из деревенского источника двигаться в город. Изменение давления распространяется по трубопроводу очень быстро, примерно со скоростью 1400 км/с (зависит от плотности воды, от ее температуры, от величины давления).

Спустя долю секунды после пуска насоса в деревне, вода начала двигаться уже в городе. Но та же ли это вода, что движется в данный момент в деревне? Нет! Молекулы воды в нашем примере толкают друг друга, а сами движутся значительно медленнее, поскольку скорость их дрейфа зависит от величины напора. Толкотня молекул между собой распространяется на много порядков быстрее чем движение молекул вдоль трубы.

Так и с электрическим током: скорость распространения электрического поля аналогична распространению давления, а скорость движения электронов, образующих ток, аналогична движению непосредственно молекул воды.

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Теперь вернемся непосредственно к электронам. Скорость упорядоченного движения электронов (или других носителей заряда) называют дрейфовой скоростью. Ее электроны приобретают благодаря действию внешнего электрического поля.

Если внешнего электрического поля нет, то электроны движутся хаотично внутри проводника лишь в тепловом движении, но направленного тока нет, и следовательно дрейфовая скорость в среднем оказывается равной нулю.

Если внешнее электрическое поле приложено к проводнику, то в зависимости от материала проводника, от массы и заряда носителей заряда, от температуры, от разности потенциалов, – носители заряда придут в движение, но скорость этого движения будет существенно меньше скорости света, порядка 0,5 мм в секунду (для медного проводника сечением 1 мм2, по которому течет ток 10 А, средняя скорость дрейфа электронов составит 0,6–6 мм/c).

Эта скорость зависит от концентрации свободных носителей заряда в проводнике n, от площади сечения проводника S, от заряда частицы e, от величины тока I. Как видите, несмотря на то, что электрический ток (фронт электромагнитной волны) распространяется по проводнику со скоростью света, сами электроны движутся куда медленнее. Получается, что скорость тока — это очень малая скорость.

Почему ток в розетке и проводах не бежит со скоростью света? Или все-таки…

Со светом все просто и прозрачно: скорость полета фотона равна скорости распространения светового луча. С электронами сложнее. Электрический ток сильно отличается от видимого излучения.

Почему считается, что скорость полета фотонов в вакууме и скорость электронов в проводнике одинакова? Утверждение основано на фактических результатах. В 1888 году немецкий ученый Генрих Герц экспериментально установил, что электромагнитная волна распространяется в вакууме так же быстро как свет. Но можно ли говорить, что электроны в проводнике летят со скоростью света? Надо разобраться с природой электричества.

Что такое электрический ток?

Из школьного курса физики известно, что электричество – это поток электронов, упорядоченно перемещающихся в проводнике. Пока источника электричества нет, электроны движутся в проводнике хаотически, в разных направлениях. Если суммировать траектории всех заряженных частиц, получится ноль. Поэтому кусок металла не бьет током.

Если металлический предмет подсоединить к электрической цепи, все электроны в нем выстроятся в цепочку и потекут от одного полюса к другому. Насколько быстро произойдет упорядочение? Со скоростью света в вакууме. Но это не означает, что электроны полетели от одного полюса к другому также стремительно. Это заблуждение.

Просто люди настолько привыкли к утверждению, что электричество распространяется так же быстро как свет, что не особо задумываются над деталями.

Популярные заблуждения о скорости света

Еще одним примером такого поверхностного восприятия можно назвать понятие о природе молнии. Многие ли задумываются, какие физические процессы происходят во время грозы? Какова, например, скорость молнии? Можно ли без приборов узнать, на какой высоте бушуют грозовые разряды? Разберемся со всем этим по порядку.

Кто-то может сказать, что молния бьет со скоростью света, и будет не прав. Настолько быстро распространяется вспышка, вызванная гигантским электрическим разрядом в атмосфере, но сама молния гораздо медленнее. Грозовой разряд – это не удар луча света наподобие лазера, хотя визуально похоже. Это сложная структура в насыщенной электричеством атмосфере.

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Ступенчатый лидер или главный канал молнии формируется в несколько этапов. Каждая ступень в десятки метров образуется со скоростью около 100 км/сек вдоль разрядных нитей из ионизированных частиц. Направление меняется на каждом этапе, поэтому молния имеет вид извилистой линии. 100 километров в секунду – это быстро, но до скорости электромагнитной волны очень далеко. В три тысячи раз.

Что быстрее: молния или гром?

Этот детский вопрос имеет простой ответ – молния. Из того же школьного курса физики известно, что скорость звука в воздухе равна примерно 331 м/сек. Почти в миллион раз медленнее электромагнитной волны. Зная это, легко понять, как высчитать расстояние до молнии.

Свет вспышки доходит до нас в момент разряда, а звук летит дольше. Достаточно засечь промежуток времени между вспышкой и громом. Теперь просто считаем, насколько далеко от нас ударила молния, по простой формуле:

L =T × 331

Где T – это время от вспышки до грома, а L – это расстояние от нас до молнии в метрах.

Например, гром прогремел через 7.2 секунды после вспышки. 331 × 7.2 = 2383. Получается, что молния ударила на высоте 2 километра 383 метра.

Скорость электромагнитной волны – это не скорость тока

Теперь будем более внимательны к цифрам и терминам. На примере молнии убедились, что маленькое неверное допущение может привести к большим промахам. Точно известно, что скорость распространения электромагнитной волны равна 300 000 километров в секунду. Однако это не означает, что электроны в проводнике перемещаются с такой же скоростью.

Представим, что две команды соревнуются, кто быстрее доставит мяч с одного края поля на другой. Обязательное условие – каждый член команды сделает несколько шагов с мячом в руках. В одной команде пять человек, а в другой – один. Пятеро, выстроившись в цепочку, сыграют в пас, сделав каждый несколько шагов в направлении от старта к финишу. Одиночке придется бежать всю дистанцию. Очевидно, что победят пятеро, потому что мяч летит быстрее, чем человек бегает.

Так же и с электричеством. Электроны «бегают» медленно (собственная скорость элементарных частиц в направленном потоке исчисляется миллиметрами в секунду), но передают друг другу «мячик» заряда очень быстро. При отсутствии разности потенциалов на разноименных концах проводника все электроны движутся хаотично. Это тепловое движение, присутствующее в каждом веществе.

Если бы электроны двигались в проводах со скоростью света

Представим, что скорость электронов в проводнике все-таки близка к световой. В этом случае современная энергетика была бы невозможна в привычном для нас виде. Если бы электроны двигались по проводам, пролетая 300 000 километров в секунду, пришлось бы решать очень сложные технические задачи.

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Самая очевидная проблема: на такой скорости электроны не смогут следовать за поворотами проводов. Разогнавшись на прямом участке, заряженные частицы будут вылетать по касательной как не вписавшиеся в вираж автомобили. Чтобы удержать летящие на космических скоростях электроны внутри энергетических магистралей, придется снабжать провода электромагнитными ловушками. Каждый участок проводки станет похожим на фрагмент адронного коллайдера.

К счастью элементарные частицы передвигаются гораздо медленнее и для передачи энергии на дальние расстояния вполне пригодны неизолированные алюминиевые провода для ЛЭП

Надеемся, что ознакомившись с этим обзором, вы нашли ответ на вопрос почему ток не бежит по кабелям со скоростью света и вспомнили кое-что из школьного курса физики, а это, согласитесь, крайне полезно в любом возрасте.

История развития кабелей

Поскольку электрический сигнал передается по кабелям, не лишним будет познакомиться с историей их появления. Первые предприятия, которые занялись производством телеграфных каналов связи, появились в Англии, в 1851-ом году.

Интересный факт: первые кабеля производились на фабриках, занимающихся изготовлением канатов. Поскольку принцип создания был схожим, цехам не пришлось тратить много времени на смену деятельности.

(+9 фото) С какой скоростью перемещается электрический ток по проводам?

Первые образцы предназначались для слаботочных систем, но в 1874-ом году в Германии на их основе началось производство силового кабеля. На территории России производство электрических проводов началось в 1878-ом году в Санкт-Петербурге. Его основал инженер М.М. Победов. В качестве изоляции использовались шелк и хлопчатая бумага. И если изначально за создание кабелей отвечала небольшая фабрика, на которой трудилось несколько человек, спустя 10 лет уже во всю силу работал завод, производивший электрические провода в большом количестве. Примерно в то же время началось производство телеграфных проводов, поскольку предприятие получило разрешение на использование изолированной проволоки.

С тех пор кабельная индустрия быстро развивается, и в мире уже используется более десяти видов различных проводов.

Почему лампочка загорается практически мгновенно?

Прежде всего, нужно различать и не смешивать понятия «скорость распространения электрического тока» и «скорость движения носителей заряда» – это не одно и то же.

Когда мы говорим о скорости распространения электрического тока в проводнике, то имеется в виду скорость распространения по проводнику электрического поля, которая примерно равна скорости света (≈ 300 000 км/сек). Однако это не означает, что движение носителей зарядов в проводнике происходит с этой огромной скоростью. Совсем нет.

Движение носителей заряда (в проводнике – это свободные электроны) происходит всегда довольно медленно, со скоростью направленного дрейфа от долей миллиметра до нескольких миллиметров в секунду, поскольку электрические заряды, сталкиваясь с атомами вещества, преодолевают большее или меньшее сопротивление своему движению в электрическом поле.

Но дело в том, что свободных электронов в проводнике очень, очень много (если каждый атом меди имеет один свободный электрон, то в проводнике столько подвижных электронов, сколько и атомов меди). Свободные электроны имеются везде в электрической цепи, включая, в том числе, и нить накаливания лампочки, которая является частью этой цепи.

При присоединении проводника к источнику электрической энергии в нем распространяется электрическое поле (со скоростью, близкой к скорости света), которое  начинает действовать на ВСЕ свободные электроны практически одновременно.

Поэтому мы не наблюдаем никакого запаздывания между замыканием контактов выключателя и началом свечения лампочки, находящейся за десятки или сотни километров от электростанции. Включили напряжение, свободные электроны начали движение (во всей цепи одновременно), перенесли заряд, передали кинетическую энергию атомам вольфрама (нить накаливания), последняя нагрелась до свечения – вот и светит лампочка.

В случае переменного тока для получения требуемого тепла (рассеиваемой мощности нити накаливания) направление тока не имеет значения. Свободные электроны совершают колебания в соответствии с изменениями электрического поля и переносят заряд туда-обратно. При этом электроны сталкиваются с атомами кристаллической  решетки вольфрама, передавая им свою энергию. Это приводит к нагреву нити накаливания лампочки и ее свечению.

От чего зависит скорость дрейфа носителей зарядов?

Скорость направленного дрейфа носителей зарядов в электрическом поле пропорциональна величине электрического тока: небольшой ток означает медленную скорость потока зарядов, большой ток означает большую скорость.

На скорость носителей заряда влияет также сопротивление проводника. Тонкий проводник имеет большее сопротивление, проводник большого диаметра имеет меньшее сопротивление. Соответственно, в тонком проводнике скорость потока свободных электронов будет больше, чем в толстом проводнике (при одном и том же токе).

Имеет значение и материал проводника: в алюминиевом проводнике скорость потока электронов будет больше, чем в медном проводнике такого же сечения. Это означает, кроме прочего, что один и тот же ток будет нагревать алюминиевый проводник больше, чем медный.

Тепловое действие тока

Рассмотрим природу теплового действия тока более подробно.

При отсутствии электрического поля свободные электроны перемещаются в кристалле металла хаотически. Под действием электрического поля свободные электроны, кроме хаотического движения, приобретают упорядоченное движение в одном направлении, и в проводнике возникает электрический ток.

Свободные электроны сталкиваются с ионами кристаллической решетки, отдавая им при каждом столкновении кинетическую энергию, приобретенную при свободном пробеге под действием электрического поля. В результате упорядоченное движение электронов в металле можно рассматривать как равномерное движение с некоторой постоянной скоростью.

Поскольку кинетическая энергия электронов, приобретаемая под действием электрического поля, передается ионам кристаллической решетки при столкновении, то при прохождении постоянного тока проводник нагревается.

В случае переменного тока имеет место тот же эффект. С той лишь разницей, что электроны не перемещаются в одном направлении, а под действием переменного электрического поля они колеблются вперед-назад с частотой сети (50/60 Гц), оставаясь практически на месте.

При этом электроны также сталкиваются с атомами кристаллической  решетки металла, передают свою кинетическую энергию и это приводит к нагреву кристаллической  решетки. При достаточно больших  значениях тока сильно разогретая решетка может даже потерять постоянные связи (металл начнет плавиться).

Ключи темы

1. какая скорость тока в проводах
2. скорость тока
3. с какой скоростью идет ток
4. скорость тока по проводам
5. тепловая и дрейфовая скорость
6. скорость электричества в проводах
7. чему равна скорость электрического тока
8. скорость электричества км с
9. скорость распространения тока
10. скорость электрического поля
11. с какой скоростью течет ток
12. скорость передачи электрического тока
13. скорость движения тока
14. скорость тока в медном проводнике
15. скорость движения заряда
16. скорость электричества по проводам
17. скорость распространения тока в проводниках
18. скорость электрического тока в проводах
19. скорость электрического тока в км ч
20. с какой скоростью движется ток
21. скорость тока в проводах
22. скорость электрического сигнала
23. чему равна скорость тока
24. какая скорость электрического тока
25. с какой скоростью движется электричество
26. скорость движения тока в проводнике
27. что быстрее скорость света или скорость тока
28. скорость электрона в проводнике с током
29. с какой скоростью двигается электрический ток
30. скорость движения электронов в проводнике с током
31. с какой скоростью движутся электроны в проводнике
32. скорость распространения электрического тока в проводнике
33. как найти скорость тока в проводнике
34. какова скорость тока
35. с какой скоростью движется электрический ток
36. какая скорость тока
37. скорость эл тока
38. какова скорость электрического тока
39. скорость движения электричества
40. скорость движения электрического поля
41. скорость электричества и скорость света
42. скорость движения электрического тока
43. с какой скоростью движется электрон
44. скорость электрического тока