(+33 фото) Изготовление сетевого фильтра своими руками

Работа электротехнических и электронных устройств 🔌 происходит за счёт питания сетевым током. ⚡ Энергопоток через провода приносит с собой сателлитные электромагнитные поля. 🔦 Они несут угрозу точности выполнения своих функций абонентами электросети. ✨ Решить этот вопрос могут сетевые фильтры (СФ). Их всегда можно купить 💰 в виде сетевых удлинителей. Зная схему сетевого фильтра, устройство несложно собрать своими руками.

Устройство

Если говорить об устройстве такой вещи, как сетевой фильтр, то следует сказать, что он может относиться к одной из 2 категорий:

  1. стационарно-многоканальной;
  2. встроенной.

В целом схема обычного сетевого фильтра, рассчитанного на напряжение в 220 В, будет стандартной и в зависимости от типа устройства может лишь чуть-чуть отличаться.

(+33 фото) Изготовление сетевого фильтра своими руками

Если говорить о встроенных моделях, то их особенностью является то, что контактные платы таких фильтров будут часть внутреннего устройства электронного оборудования.

Такие платы имеет и другая техника, что относится к категории сложных. Такие платы обычно состоят из следующих компонентов:

  • конденсаторы добавочного типа;
  • индукционные катушки;
  • дроссель тороидального типа;
  • варистор;
  • предохранитель термического типа;
  • VHF-конденсатор.

(+33 фото) Изготовление сетевого фильтра своими руками

Варистором является резистор, что имеет переменное сопротивление. Если нормативный порог напряжения в 280 вольт превышается, то его сопротивление снижается. Причем оно может снизиться не в один десяток раз. Варистор по своей сути представляет предохранитель от импульсного перенапряжения. А стационарные модели обычно отличаются тем, что имеют несколько розеток. Благодаря этому появляется возможность подключить через сетевой фильтр к электрической сети несколько моделей электрической техники.

(+33 фото) Изготовление сетевого фильтра своими руками

Кроме того, все сетевые фильтры оснащены LC-фильтрами. Такие решения применяются для аудиотехники. То есть такой фильтр – помехоподавляющий, что для аудио и работы с ним будет крайне важно. Также сетевые фильтры иногда оснащаются термическими предохранителями, что позволяют предотвратить появление скачков напряжения. Иногда в ряде моделей используются одноразовые предохранители плавкого типа.

(+33 фото) Изготовление сетевого фильтра своими руками

Конструкция

Прибор напоминает по своему виду удлинитель с кнопкой выключения, отчасти это так, но кроме колодки с розетками и провода внутри расположены и фильтрующие элементы. Они как раз и нужны для защиты от скачков напряжения и фильтрации помех.

В самом простом сетевом фильтре внутри стоит варистор. Это полупроводниковый прибор, который при превышении определенного напряжения уходит в состояние пробоя. Его применяют в сетевых фильтрах и блоках питания для защиты от всплесков напряжения. В зависимости от типа варистора он может погасить импульсы разной величины.

(+33 фото) Изготовление сетевого фильтра своими руками

  • Такой вариант исполнения на варисторе самый дешевый, поскольку кроме всплесков напряжения он ничего не фильтрует. Помехи продолжают сочиться в сеть и мешать окружающей и запитанной аппаратуре.
  • Для фильтрации высокочастотных помех широко применяются L, LC и RLC- фильтры, их устанавливают также в сетевых фильтрах и блоках питания.
  • Кроме таких вариантов встречаются еще и модели, где сетевой шнур проходит через ферритовое кольцо, или делает вокруг него пару витков. По сути это еще один L (индуктивный) элемент, который нужен для фильтрации высокочастотной составляющей спектра.

Как сделать?

Чтобы сделать максимально простой сетевой фильтр, потребуется иметь самую обычную переноску на несколько розеток со шнуром сетевого типа. Изделие делается очень просто. Для этого потребуется раскрыть корпус удлинителя, после чего осуществить припаивание сопротивления необходимого номинала в зависимости от модели удлинителя и катушки индуктивности. После этого обе ветки должны быть соединены при помощи конденсатора и сопротивления. А между розетками должен быть установлен специальный конденсатор – сетевой. Данный элемент, кстати, не является обязательным.

(+33 фото) Изготовление сетевого фильтра своими руками

Его устанавливают в корпус устройства лишь тогда, когда в нем присутствует для этого достаточно пространства.

Также можно сделать модель сетевого фильтра с дросселем из пары обмоток. Такой прибор будет применяться для аппаратуры, что имеет высокую чувствительность. Например, для аудиотехники, что довольно сильно реагирует даже на малейшие помехи в электрической сети. В результате динамики выдают звук с искажениями, а также посторонними фоновыми шумами. А сетевой фильтр такого типа дает возможность решить данную проблему. Сборку устройства лучше будет делать в удобном корпусе на плате печатного типа. Она выполняется так:

  • для наматывания дросселя следует применять кольцо из феррита марки НМ, проницаемость которого находится в диапазоне 400-3000;
  • теперь его сердечник следует заизолировать при помощи ткани, после чего покрыть лаком;
  • для обмотки следует применить ПЭВ-кабель, диаметр которого будет зависеть от нагрузочной мощности, для начала подойдет вариант кабеля в диапазоне 0,25 – 0,35 миллиметров;
  • обмотку следует осуществлять одновременно 2 кабелями в разных направлениях, каждая катушка будет состоять из 12 витков;
  • при создании такого фильтра следует применять емкости, рабочее напряжение которых составляет где-то 400 Вольт.

(+33 фото) Изготовление сетевого фильтра своими руками

Тут следует добавить, что дроссельные обмотки включены последовательно, что приводит к взаимопоглощению полей магнитного типа.

Когда ВЧ ток проходит через дроссель, то увеличивается его сопротивление, а благодаря конденсаторам осуществляется поглощение и закорачивание нежелательных импульсов. Теперь остается печатную плату установить в корпус, выполненный из металла. В случае если вы решили использовать корпус, выполненный из пластика, в него потребуется вставить металлические пластины, что даст возможность избежать возникновения лишних помех.

(+33 фото) Изготовление сетевого фильтра своими руками

Также можно сделать специальный сетевой фильтр для питания радиоаппаратуры. Такие модели нужны для техники, что имеет импульсные блоки питания, которые являются крайне чувствительным к возникновению различного рода явлений в электросети. Например, такая аппаратура может пострадать, если в электросеть 0,4 кВ попадает молния. В данном случае схема будет практически стандартной, просто уровень подавления сетевых помех будет выше. Тут силовые линии будут должны быть выполнены из медного провода с изоляцией из поливинилхлорида сечением 1 квадратный миллиметр.

(+33 фото) Изготовление сетевого фильтра своими руками

В данном случае можно применять обычные МЛТ-резисторы. Здесь также должны быть применены специальные конденсаторы.

Один должен быть рассчитан на напряжение постоянного типа емкостью 3 киловольта и иметь емкость около 0,01 мкФ, а второй с такой же емкостью, но рассчитанный на напряжение 250 В переменного тока. Также здесь будет присутствовать 2-обмоточный дроссель, что должен быть сделан на ферритовом сердечнике с проницаемостью 600 и диаметром 8 миллиметров и длиной около 7 сантиметров. Каждая обмотка должен иметь 12 витков, а остальные дроссели должны быть сделаны на броневых сердечниках, каждый из которых будет иметь по 30 витков кабеля. В качестве разрядника можно применить варистор на напряжение 910 В.

(+33 фото) Изготовление сетевого фильтра своими руками

Сетевой фильтр своими руками

Схема простейшего фильтра состоит из выключателя и варистора, вот как она выглядит:

(+33 фото) Изготовление сетевого фильтра своими руками

V1 – это и есть варистор, его маркировка «471», значит, что его напряжение срабатывания 470В, при этом чем больше его диаметр, тем большую энергию он сможет погасить не взорвавшись при этом. Это значит, что чем больший варистор вы поставите, тем лучше, лишь бы он влез по габаритам. Вот пример сетевого фильтра собранного по этой схеме, но в заводском исполнении. Из вышесказанного следует, что это дешевый прибор, который не фильтрует то, что должен, а лишь гасит импульсы.

Чтобы ваш сетевой фильтр еще и действительно был фильтром помех, необходимо добавить фильтрующий элемент – дроссель.

(+33 фото) Изготовление сетевого фильтра своими руками

Схемы – это, конечно, хорошо, но как сделать сетевой фильтр из подручных средств? Достаточно просто! Почти всегда у любителя что-нибудь мастерить, можно найти старый ненужный или нерабочий блок питания, в нём есть такой фильтр на входе. Осталось только его выпаять. На фото он стоит в ближнем к нам углу платы.

(+33 фото) Изготовление сетевого фильтра своими руками

Это дроссель с двумя обмотками, через одну из них проходит фаза, а через другую ноль, таким образом индуктивность входит в состав сетевого фильтра и снижает уровень помех.

Кстати блок питания может работать и без него, многие китайцы так и делают свои товары, часто это встречается в дешевых БП для компьютера и не только.

Если вы не нашли такого элемента в своих запасах – можно поискать ферритовое колечко с магнитной проницаемостью 400-2000 НМ и обмотать проводом ПЭВ-2 (можно смотать с 50 Гц сетевого трансформатора). Намотать на колечко так, как показано на картинке.

(+33 фото) Изготовление сетевого фильтра своими руками

Не допускайте межвиткового замыкания и оставляйте зазоры как здесь изображено, иначе получите фейерверк от перемыкании фазы на ноль. Петельку на конце разрезать, в идеальном случае – сразу мотать двумя проводами. На кольцо перед намоткой наложить изолирующий слой, например из лакоткани.

Хорошая схема, которую легко сделать своими руками выглядит следующим образом:

(+33 фото) Изготовление сетевого фильтра своими руками

А вот вариант его реализации «в железе». За основы взята пара фильтров от БП.

(+33 фото) Изготовление сетевого фильтра своими руками

Конденсаторы лучше применять керамические или пленочные. Их можно также достать из блока питания, часто там встречаются в прямоугольном корпусе с острыми углами (параллелепипед).

Если есть ненужный БП можно просто отрезать часть платы с фильтром и использовать её. Вот пример на фото с указанием, что нужно отпилить для получения сетевого фильтра за пару минут.

(+33 фото) Изготовление сетевого фильтра своими руками

И вот еще один вариант схемы для повторения. Именно она и используется во множестве блоков питания стандарта ATX:

(+33 фото) Изготовление сетевого фильтра своими руками

Сетевой фильтр – полезное и простое устройство, которое не сложно сделать самому в домашних условиях. А если учесть все изобилие техники, прошедшей через современных обывателей и то, что у многих есть несколько ненужных и не работоспособных устройств, то запчасти валяются буквально у нас под ногами.

Сетевой фильтр из дешевого удлинителя: инструкция от мастера

Еще давным-давно я заметил, что когда включается/выключается холодильник на кухне, в колонках стереосистемы звучит неприятный щелчок. Проблема решилась установкой конденсаторов в розетки — с этого началась моя «дружба» с сетевыми фильтрами. В наши дни электрическая сеть 220 вольт сильно загрязнена множеством помех и кратковременных всплесков напряжения, которые проникают из сети и мешают аппаратуре нормально работать. Для борьбы с сетевыми помехами применяются фильтры.

Дешевые фильтры на самом деле фильтрами не являются, а дорогие (навроде вполне приличного фильтра «Pilot») — слишком дороги, ведь обычно их требуется несколько штук (у меня дома их штук восемь, включенных постоянно). Поэтому хороший вариант — купить дешевый фильтр и переделать его.

В принципе, для доработки можно использовать и обычный удлинитель, но обычно в удлинителе нет свободного места для тех деталей, которые в него нужно будет вставить. А вот в удлинителе с выключателем (тоже полезная вещь) свободное место есть.

Мне недавно срочно понадобился такой вот фильтр, я купил в ближайшем киоске удлинитель и доработал его. На все (включая приобретение и фотографирование) ушло меньше чем полдня. Вот герой нашего рассказа:

(+33 фото) Изготовление сетевого фильтра своими руками

Такие устройства на самом деле сетевым фильтром не являются. Там внутри находится только лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда присутствуют в сети (немного про варисторы см. Маломощный блок питания). Вот и вся его фильтрация. Некоторые устройства (в том числе и мое) имеют токовый размыкатель, который должен по идее размыкаться при протекании большого тока (никогда не проверял, как они работают). В этом случае на корпусе есть кнопочка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал.

Разбираем удлинитель и смотрим что у него внутри:

(+33 фото) Изготовление сетевого фильтра своими руками

Число «14», нанесенное синим маркером, ничего не означает — так изначально и было. По нему можно судить, что собирали эту штуку не китайцы — иначе бы был иероглиф! Слева черная фуська — токовый размыкатель, Правее другая черная фуська (к ней подходит много проводов) — выключатель. Между ними варистор, но его плохо видно. На пересечении зеленого и коричневого проводов, голубой диск внизу — это он. Красные провода припаяны (проверьте качество пайки, оно бывает отвратительным!) к длинным металлическим пластинам, которые и являются контактами.

Теперь встраиваем внутрь фильтр, и готово. Вот схемы того, что было, и что будет (выключатель с лампочкой подсветки на схемах не показан):

(+33 фото) Изготовление сетевого фильтра своими руками

  • На исходной схеме: Sc — токовый размыкатель, V1 — варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса; диаметр 6…10 мм — самое то), надписью «Удлинитель» как раз и помечены эти самые контактные пластины.
  • В доработанном варианте добавляется RLC фильтр. Правда хороший фильтр сделать не удастся — все же мало места, да и для него нужно подбирать детали. Именно так делают «Пилоты» — сначала проектируют схему, а потом под нее уже делают корпус. Но тем не менее, такой вот фильтр, собранный из подручных материалов, работает достаточно хорошо.
  • Пройдемся по элементам. Катушки L1 и L2 вместе с конденсаторами С1 и С2 образуют LC фильтр. Сопротивление катушек на высоких частотах большое, а вот на низких — маленькое. Поэтому, чтобы и низкочастотные помехи хоть немного подавить, последовательно с катушками включены резисторы R1, R2. Резистор R3 разряжает конденсаторы при отключении от сети, иначе, заряженные конденсаторы могут нехило стукнуть током. Конденсатор С2 включен с другой стороны контактных пластин для того, чтобы создать «распределенную» емкость, чтобы индуктивность и сопротивление пластин не ухудшало фильтрацию. На самом деле, в нашем случае разницы, где включен С2 никак не заметно слишком уж маленькая индуктивность и сопротивление контактных пластин. Но все равно приятно, что мы об этом позаботились! И, кроме того, именно в том конце корпуса есть свободное место, куда можно поставить этот конденсатор.
  • Иногда возникают споры о размещении резисторов R1 и R2. Как их включать — до варистора, или после, как у меня? На самом деле это зависит от нашей цели. До варистора, резисторы нужно включать, если мы хотим улучшить работу варистора при подавлении кратковременных высоковольтных (до нескольких тысяч вольт) импульсов. Эти импульсы варистор «пропускает через себя», ток через варистор достигает сотен ампер, и практически все напряжение импульса падает на сопротивлении проводов и контактов.

(+33 фото) Изготовление сетевого фильтра своими руками

  • Сопротивление проводов довольно маленькое (это ведь чем лучше сеть, тем меньше сопротивление), и ток очень большой. Поэтому при большом токе на варисторе получается довольно большое напряжение (левый рисунок). Если же на пути тока поставить резисторы R1 и R2, то их сопротивление (совместно 1…2 Ома) заметно больше сопротивления проводов, и ток будет гораздо меньше (но все равно сотня-другая ампер!). А раз ток меньше, то и напряжение на варисторе меньше (правый рисунок).
  • Казалось бы, правый вариант намного лучше! Не совсем. Дело в том, что эти импульсы кратковременны, и большинство приборов их «не замечает» (они нередки в сети, вы их замечали?). Для чего же варистор? На всякий пожарный случай. Мало ли что. 100 раз импульс не подействует, а на 101-й придет импульс побольше, и спалит блок питания, или еще что. Так вот, если этот кратковременный импульс в 3000 вольт не всегда заметен, есть ли разница, останется от него 300 вольт, или 600? (Внимание! цифры 300 и 600 я взял «от фонаря»! На самом деле все это очень сильно зависит и от конкретной сети, и от конкретного варистора и от конкретного импульса! Но принцип верный!)
  • Почему же я включил резисторы после варистора? Чтобы максимально отделить от варистора конденсаторы. Конденсатор, включенный параллельно варистору, совсем даже ему не помогает (иногда мешает, иногда — нет). Кроме того, при ограничении варистором вражеских импульсов, образуется куча высокочастотных помех, у которых напряжение хоть и не высокое, но кому они нужны? Включив резисторы после варистора, я минимизировал прохождение помех на выход фильтра — ведь у меня получилось две ступени фильтрации — с высоковольтной гадостью справляется варистор, а с остальной — катушки с конденсаторами, которым резисторы очень даже помогают.

Вывод. Если у вас очень «грязная» сеть, в которую часто включают сварочные аппараты, ставьте резисторы до варистора. Если нет — ставьте их после. Возникает вопрос: а почему бы не включить две пары резисторов — одну до варистора. а другую после варистора? По одной простой причине — резисторы греются. Две пары резисторов увеличивают нагрев вдвое. А там и расплавится что-нибудь, или вообще загорится! А ставить резисторы маленького сопротивления (чтобы меньше грелись) — тоже не выход, они будут хуже работать.

Итак, берем детали

(+33 фото) Изготовление сетевого фильтра своими руками

и прикидываем, куда их притулить (о самих деталях — ниже):

(+33 фото) Изготовление сетевого фильтра своими руками

Все хорошо влазит, ни с чем не замыкает, можно паять.

(+33 фото) Изготовление сетевого фильтра своими руками

Конденсатор С2 (он справа) должен иметь длинные выводы, иначе он не даст поставить на место контактные пластины (хотя длинные выводы ухудшают работу конденсатора). Поэтому его можно и не ставить — будет намного легче собирать все обратно.

Когда все обратно собрали — на вид ничего не изменилось, но начинка уже совсем другая. Чтобы окончательно перекрыть путь помехам, на сетевой провод возле самого удлинителя ставим ферритовую шайбу (удобнее всего разрезную на защелках):

(Это на другом проводе феррит — тот, который я поставил на этот удлинитель точно такой же, просто я забыл сфотографировать, а потом уже было далеко доставать)

Об этом поподробнее. В отличие от нормальной передачи энергии, когда по одному проводу ток приходит в нагрузку, а по другому возвращается обратно в источник, высокочастотная (ВЧ) помеха может распространяться сразу по двум проводам. Например, при ударе молнии вблизи электрических проводов, в них возникает ток, который идет сразу по обоим проводам в устройство, и, пройдя сквозь него, через емкость между корпусом и землей замыкается на землю.

(+33 фото) Изготовление сетевого фильтра своими руками

Т.е. оба сетевых провода для помехи — это как два параллельных прямых провода (или как антенна), а земля — обратный провод. Внутри устройства, ток ВЧ помехи может воздействовать на разные цепи и мешать им жить. Нацепив ферритовое кольцо на сетевой провод, мы увеличиваем его (провода) индуктивность, а значит и сопротивление на высоких частотах. Поэтому ток помехи станет меньше.

Конструкция и детали

Схема очень непривередлива к деталям. Но все же некоторые правила нужно соблюдать. Разберем по порядку.

Варистор. Тип 471. Диаметр 6…10 мм. Это оптимально.

Резисторы R1, R2. Чем их сопротивление больше, тем лучше фильтрация, но больше нагрев и больше потери напряжения. С другой стороны, нагрев и падение напряжения тем больше, чем больше потребляемый ток (и мощность). Поэтому сопротивление резисторов выбираем в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру:

Мощность нагрузки, Вт до 250 до 380 до 500
Сопротивления R1 и R2, Ом 0,82 0,36 0,22
  • Если планируется подключать более мощные потребители, то возможно, придется вообще отказаться от резисторов. С другой стороны, зачем делать фильтр, чтобы подключать к нему утюг?!
  • Резисторы используются мощностью 5 Вт. Можно взять и двухватные, но не стОит — они должны иметь запас по мощности на случай, если вдруг ток окажется больше, чем ожидалось (или помеха проскочит, где ее энергия выделится?..).
  • Дроссели L1 и L2. Это самый «труднодоставаемые» элементы. Но с другой стороны, поскольку вместе с ними работают резисторы, требования к дросселям снижаются. Требования такие:
  • Ферритовый сердечник. Катушка без сердечника имеет слишком низкую индуктивность (при реальных габаритах), а стальной сердечник плохо работает на ВЧ.
  • Сердечник не замкнут, или с воздушным зазором — иначе сердечник может насытиться, и индуктивность сильно снизится.
  • Максимальный ток катушки (это ток, при котором индуктивность начинает снижаться из-за насыщения сердечника) не меньше, чем ток нагрузки.
  • Индуктивность дросселя не менее 10 мкГн. Чем больше, тем лучше (до 10 мГн).
  • Дроссели не имеют магнитной взаимосвязи.
  • Конденсаторы С1, С2. Если С2 поставить не удается, то вполне можно ограничиться одним конденсатором. Поскольку они соединены параллельно, то вполне можно рассматривать их как один конденсатор с емкостью, равной сумме емкостей С1 и С2.

Требования к конденсатору:

  • Конденсатор пленочный, типа К73-17 или аналогичный (импортные меньше по габаритам).
  • Емкость не меньше 0,22 мкФ. Больше 1 мкФ тоже не нужно.
  • Напряжение 630 вольт. Зачем столько? А это запас, ведь при помехах, напряжение повышается. Да и по правилам напряжение на конденсаторе должно быть меньше максимально допустимого.
  • Резистор R3. Его мощность 0,5 Вт, хотя на нем выделяется в 10 раз меньше. К этому резистору прикладывается 220 вольт, и он должен иметь довольно большие геометрические размеры (отсюда и 0,5 Вт), чтобы такое напряжение выдерживать. Сопротивление от 510 кОм до 1,5 МОм.

Вот и все. Можно пользоваться, и удачи в борьбе с помехами!

По просьбе читателей, я измерил насколько фильтр подавляет помехи. Это не очень хорошо получилось — высоковольтные импульсы мне дома сгенерировать сложно, и я этого не делал. А вот ВЧ помеху генератор выдал (маленькой амплитуды, но какая разница?). Вот два теста. Они могут быть не совем точными — величина подавления может быть несколько занижена. В качестве нагрузки в фильтр был включен паяльник.

Первый тест — подавление частоты 30 кГц. Эта частота часто используется в импульсных блоках питания (компьютерных, например), и этой частотй «засорена» сеть. Вот осциллограммы напряжения на входе и выходе:

(+33 фото) Изготовление сетевого фильтра своими руками

  • Синий — вход, красный — выход. Масштабы одинаковы. Подавление раз в 8, что очень неплохо для простого фильтра, да еще сделанного из подручных материалов.
  • Второй тест — действительно высокочастотная помеха частотой 200 кГц:

(+33 фото) Изготовление сетевого фильтра своими руками

Здесь выходное напряжение в 100 раз большем масштабе, чем входное. Подавление помехи примерно в 350 раз!!! Так что ВЧ помехи не пройдут.

В продаже появились неплохие катушки:

(+33 фото) Изготовление сетевого фильтра своими руками

Они намотаны довольно толстым проводом на ферритовом сердечнике, по форме напоминающем гантелю. Снаружи надета термоусадочная трубка. У этих катушек довольно большая индуктивность при приличном токе (и несколько типоразмеров — чем больше размер, тем больше произведение индуктивности на максимальный ток). Имея такие катушки, фильтры делать — одно удовольствие. Схема почти такая же, теперь катушки «мощные» и резисторы в цепь гашения помех не нужны:

(+33 фото) Изготовление сетевого фильтра своими руками

В принципе, все осталось прежним, но кроме катушек изменился конденсатор. Это специализированный конденсатор, предназначенный доя работы в фильтрах (такие стоЯт в компьютерах и бесперебойниках. И напряжение 280 В, на которое рассчитан конденсатор — это действующее значение переменного тока (об этом говорит знак «280V ~» на корпусе). Такое же, как и 220. Т.е. не нужно делить напряжение, написанное на конденсаторе на корень из 2, чтобы узнать на какое макс. напряжение переменного тока его можно включить. Как раз на 280 вольт. А у нас — 220, запас приличный. Вот что получилось:

(+33 фото) Изготовление сетевого фильтра своими руками

Голубой — варистор, который и был в этом «фильтре»-удлиннителе; рядом с ним черные — катушки, по хорошему их надо размещать так, чтобы их оси были перпендикулярны, но я сначала сфотографировал, потом отогнул (нижнюю на фото) катушку, потом все закрутил, а уж потом вспомнил, что сфотографировал неправильно! Снова разбирать было лень, уж извиняйте! Желтый — это конденсатор. Насколько я с ними встречался — они все желтые.

Резистор, разряжающий конденсатор, здесь не установлен — в этот фильтр будет все время включено устройство, которое и разрядит конденсатор. А если один раз в жизни я этот фильтр сниму, то уж не забуду разрядить. Просто быо лень искать и паять резистор, но всем я категорически рекомендую в этом с меня пример не брать, и резистор устанавливать!

Вот и все! Очень просто и очень неплохо!

Меры предосторожности

Если говорить о мерах предосторожности, то для начала следует вспомнить о том, что самодельный сетевой фильтр, который вам хочется собрать из доступных деталей – это довольно-таки сложный технический прибор. И без знаний в области электроники, причем довольно обширных, правильно сделать его попросту невозможно. Кроме того, все работы по созданию или доработке уже существующего устройства должны вестись исключительно с соблюдением всех мер безопасности. Иначе высок риск поражения электрическим током, что может быть не только опасно, но и смертельно.

Тут следует помнить, что конденсаторы, применяющиеся для создания сетевых фильтров, рассчитаны на довольно высокое напряжение.

(+33 фото) Изготовление сетевого фильтра своими руками

Это позволяет им производить накопление остаточного заряда. По этой причине получить удар током человек может даже после того, как устройство было полностью отключено от электрической сети. Поэтому при работе обязательно должно присутствовать параллельно включенное сопротивление. Еще одним важным моментом будет то, что перед работой с паяльником следует удостовериться в том, что все элементы сетевого фильтра находятся в исправном состоянии. Для этого следует использовать тестер, которым необходимо замерить основные характеристики и сравнить их с теми значениями, которые заявлены.

Последний важный момент, о котором не будет лишним сказать, состоит в том, что не следует допускать пересечения кабелей, особенно в местах, где потенциальный нагрев может быть очень большим. Например, речь идет об оголенных контактах, а также резисторах сетевого фильтра. Да и не будет лишним убедиться перед тем, как включать устройство в сеть, что не будет никаких замыканий. Это можно осуществить при помощи прозвонки тестером. Как можно убедиться, сделать сетевой фильтр своими руками возможно. Но для этого следует четко знать, какие действия вы осуществляете и иметь определенные знания в области электроники.

(+33 фото) Изготовление сетевого фильтра своими руками

Заключение

С каждым новым поколением электронного оборудования предъявляются повышенные требования к качественным характеристикам сетевого тока. Чтобы не заниматься ремонтом чувствительной электроники, нужно обязательно подключать её через сетевые фильтры. Если фильтровать ток нужно для небольшого количества потребителей, то можно пойти по экономному пути и изготовить сетевой фильтр своими руками.

Добавить комментарий